「Review paper」Mechanical reliability of alloy-based electrode materials for rechargeable Li-ion batteries

نویسندگان

  • Y. F. Gao
  • M. Cho
  • M. Zhou
  • George W. Woodruff
چکیده

Lithium alloys with metallic or semi-metallic elements are attractive candidate materials for the next-generation high-capacity rechargeable Li-ion battery anodes, due to their large specific and volumetric capacities. The key challenge in the application of these materials has been the very large volume changes, and the associated stress buildup and failure during insertion and extraction of lithium. While such stress buildup bears resemblance to the process of thermo-stress development, a phenomenon relatively well-understood, the physics involved in these alloy-based electrodes is much more complex in nature, more challenging to address, and richer in the variety of influencing factors. The reasons not only lie in the fact that the mechanical deformations are much larger, but also arise from the fact that the processes entail interactions among mass diffusion, chemical reactions, non-linear plastic flow and material property evolutions. In this paper, we present a review of some of the fundamental issues and the latest research related to the mechanical reliability of such alloy-based anode materials, with a focus on Li/Si, a material with the highest known theoretical energy storage capacity. The review primarily concerns continuum-level analyses, with relevant experimental data and atomistic-level results as input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanics of high-capacity electrodes in lithium-ion batteries∗

Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behav...

متن کامل

Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion ...

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013